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ABSTRACT 

The relatively constant carotenoid composition ofleaves in higher plants suggests 

Arabidopsis leaves could model interactions of P-carotene and lutein ingested in vegetable 

leaves. We compared liver vitamin A stores in gerbils fed P-carotene in lutein-free (lut2) 

mutant or wild-type (WT) Arabidopsis leaves. Gerbils were fed a vitamin A-free diet for 4 

weeks. They were then fed one of 4 diets for 6 weeks: 1) vitamin A-free diet (n = 8); 2) 

vitamin A-free diet supplemented with purified P-carotene (22.0 nmol P-carotene/g diet; n = 

8); 3) vitamin A-free diet supplemented with /ut2 leaves (61.3 nmol P-carotene/g diet; n = 3); 

or 4) vitamin A-free diet supplemented with WT leaves (69.1 nmol P-carotene/g diet; n = 3). 

There were no group differences in body or liver weights. Liver vitamin A stores were 48% 

higher in gerbils fed /ut2 leaves (2.94 ± 0.14 µmol) than in those fed WT leaves (1.99 ± 0.10 

µmol; P = 0.005). Liver vitamin A stores were higher in gerbils fed purified P-carotene (3.80 

± 0.27 µmol) than in those fed WT leaves (P = 0.003) or vitamin A-free diet (0.45 ± 0.08 

µmol; P < 0.001). The difference in liver vitamin A stores in gerbils fed purified P-carotene 

or lut2 leaves was not statistically significant. Although our finding may not extrapolate to 

humans, for the first time, we have shown carotenoid-carotenoid interactions when ingested 

within a plant matrix. 
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GENERAL INTRODUCTION 

Thesis organization 

There are three chapters in this thesis. The first chapter gives a general background 

on the protective associations between P-carotene and chronic diseases, as well as between 

vitamin A and diseases. There is also a review of the low bioavailability of P-carotene in 

plant matrices and the factors that may affect the bioavailability of P-carotene, particularly, 

the inhibitory effect of lutein on utilization of P-carotene ingested from dark green leafy 

vegetables. The lutein-deficient mutant of Arabidopsis plant is addressed. The relative 

merits of different animal models of human P-carotene metabolism are also discussed in this 

chapter. 

The second chapter is a manuscript to be submitted for publication in the journal 

Nature. It describes an animal study using the Mongolian gerbil (Meriones unguiculatus) as 

a model and Arabidopsis wild-type (WT) and lutein-deficient lut2 leaves to model 

interactions of P-carotene and lutein ingested in dark green leafy vegetable leaves. The 

findings and significance of this study are described in detail. 

The third chapter gives the general conclusions derived from the study. 

1 
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Literature Review 

Carotenoids are red and yellow pigments synthesized by a variety of plants and 

abundant in most darkly colored fruits, vegetables, and red palm oil1• The carotenoids 

consist of more than 600 compounds. Lycopene is the major pigment of red-fleshed fruits 

and fruit vegetables, such as watermelon, red-fleshed papaya, and red or pink grapefruit and 

tomatoes. 13-Carotene is the most common of all carotenoids in foods, such as apricot, carrot, 

mango, loquat, palm fruits. Lutein is the predominant carotenoid in leaves, green vegetables, 

and yellow flowers2. 

Dietary carotenoids are related to decreased risks of cancers, cardiovascular disease, 

age-related macular degeneration, and other diseases. Numerous of studies have been carried 

out to investigate the effects of low intake of vegetables, fruits and carotenoids on cancers3. 

Hydrocarbon carotenoids such as 13-carotene and lycopene are related to risk of specific 

cancers and heart disease. A case-control study in New York City4 showed that there was an 

association between the risk of breast cancer and the serum concentrations of 13-carotene and 

other carotenoids. Those women with the lowest concentrations of total carotenoids had 

about a 2.3-fold increase in risk. Jialal's group5 showed that 13-carotene inhibited LDL 

oxidation, which indicated that 13-carotene might play an important role in the prevention of 

atherosclerosis. Results from the Physicians' Health Study6 showed that, in a large 

population of men, higher intake of vegetables rich in carotenoids was associated with lower 

risk of coronary heart disease. Age-related macular degeneration is the leading cause of 

blindness in the United States 7. Oxygenated carotenoids, which are called xanthophylls, such 

as lutein and zeaxanthin, may be important in protecting eye tissues8' 9. A study10 carried out 

in patients with cataracts and age-related macular degeneration (ARMD) showed that 
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subjects supplemented with lutein at dietary amount had increased serum lutein 

concentrations and improved visual function, which indicated an association between high 

intake of lutein and improved visual acuity. The Los Angeles Atherosclerosis Study11 

showed an inverse association between intake oflutein and progress of early atherosclerosis. 

3 

The inhibitory effects of carotenoids on cancers and heart disease have been 

suggested to be mediated through the antioxidant properties of certain carotenoids in 

scavenging free radicals and other oxidants12' 13. Liebler and McClure14 detected some P-

carotene-radical oxidation products which were associated with antioxidant reactions. The 

alternating double and single bonds form the C40 carbon skeleton, which is called the polyene 

chain of carotenoids. Carotenoids are not stable toward oxidation because of the highly 

reactive polyene chain which is easily attacked by electrophilic reagents, but that is also how 

carotenoids function as antioxidants15. The ability of carotenoids to quench singlet oxygen is 

related to the conjugated double-bond system, and maximum protection is given by those 

having nine or more double bonds16. 

Structurally, vitamin A (retinal) is one-half of the molecule of P-carotene with an 

added molecule of water at the end of the lateral polyene chain. Vitamin A is provided in the 

diet in two major forms. Preformed vitamin A as retinal is obtained from animal sources 

such as liver, butter, cheese, margarine, dried milk, cream, fortified milk, egg, and some 

seafood. Provitamin A is provided as P-carotene, a-carotene, and other provitamin A 

carotenoids and is found mainly in colored fruits and orange or green-colored vegetables 1• 

Important sources of pro vitamin A carotenoids are sweet potatoes, pumpkin, squash, carrots, 

tomatoes, apricots, mangos and most greens, broccoli, brussels sprouts, and asparagus. 
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Of the approximately 600 identified naturally-occurring carotenoids, about 60 have 

provitamin A activity17 . Provitamin A carotenoids are the primary dietary source of vitamin 

A for most of the world's population18. The major provitamin A carotenoid in fruits and 

vegetables is ~-carotene, which has the greatest provitamin A activity. The amount and 

bioavailability of dietary provitamin A carotenoids determine whether vitamin A 

requirements are met in most populations, especially those in developing countries19. 

4 

Vitamin A deficiency (V AD) is a public health problem in about 76 countries, 

especially in South-East Asia20. It is the leading cause of preventable blindness in children. 

2.8 million children of preschool age are estimated to be clinically affected, and 258 million 

are subclinically affected20 . Among the 2.8 million children, about 350,000 who have eye 

impairment caused by V AD go blind every year and up to 60% die within several months of 

becoming blind20. V AD is also associated with increased severity of infections, particularly 

measles and diarrheal disease21 • Vitamin A also plays an important role in the immune 

system and sufficient vitamin A stores are associated with decreased risk of transmission of 

human immunodeficiency virus (HIV) from infected mothers to their infants21 . Sudanese 

children with lower dietary vitamin A intakes were found to have much higher risk of 

mortality22• 

Vitamin A deficiency is endemic in areas of the world where dark green leafy 

vegetables, such as spinach, water spinach, and cassava leaves are a staple. The prevalence 

ofxerophthalmia in the Republic of Kiribati is among the highest reported in the world 

although carotenoid-containing fruits and vegetables are consumed, among which the dark 

green leafy vegetables are the most common source of provitamin A carotenoids23 . In 

Bangladesh, subclinical vitamin A deficiency is highly prevalent among adolescent female 
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garment factory workers whose vitamin A intakes are mainly from dark green leafy 

vegetables24 • de Pee's group25 found that consumption of dark green leafy vegetables 

(cassava leaves, water spinach, spinach, or carrots) in Indonesian women did not improve 

vitamin A status but a wafer enriched with the same amount of P-carotene produced a 

substantial improvement. The low efficiency of conversion of plant sources of provitamin A 

in humans, along with the problem of malnutrition and low-fat diets, is a major constraint to 

a sustainable, plant food-based solution to vitamin A deficiency26. 

There are many factors that affect the bioavailability and bioconversion of 

carotenoids, such as food matrix, interaction with fat and fiber, nutritional status, interaction 

with other carotenoids, aging and parasite infection. In nature carotenoids in a wide variety 

of plants, animals, and microorganisms are protein-bound. Release from the food matrix is 

an important step in the absorption process. Dietz et al27 found that P-carotene 

bioavailability increased with heat treatments. Pure P-carotene dissolved in oil or aqueous 

dispersions is efficiently absorbed28' 29, whereas carotenoids in uncooked vegetables such as 

P-carotene in carrot are poorly absorbed29 . A fruit and vegetable dietary intervention study3° 

was carried out in Indonesia schoolchildren. The changes in serum retinol and P-carotene 

concentrations in the fruit group were higher than those in the vegetable group. 

Consumption of mechanically homogenized spinach induces higher plasma concentration of 

lutein, which indicates that the bioavailability of lutein can be improved by disruption of the 

vegetable cell walls31 . van het Hof et ai32 also found that heat treatment and mechanical 

homogenization enhanced the release and improved the bioavailability of lycopene from 

tomatoes. They concluded that disruption of the cellular matrix of tomatoes increased the 

bioavailability of carotenoids. A study3 designed to examine the effect of variously 
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processed spinach products and dietary fiber on serum carotenoid concentrations found that 

the relative bioavailability of P-carotene in the group fed enzymatically liquefied spinach was 

almost twice as high as that in the group fed whole spinach leaf. Therefore, heat treatment 

helps to release carotenoids contained within the cell walls by softening the cell walls and 

hence increases the bioavailability of intestinal carotenoids. 

The absorption of P··carotene requires dietary fat. Addition of fat to spinach resulted 

in greater P-carotene absorption and utilization in Indian children than the same amount of 

spinach without fat added34.. Addition of 5 g or 10 g fat to the meal resulted in similar 

increases in serum vitamin A concentration, which indicated that as little as 5 g of fat might 

be enough to optimize carotene absorption from the diet. Prince and Frisoli35 found that P-

carotene administered without fat did not cause detectable accumulation in the serum,. but · 

there was an increase in semm P-carotene when P-carotene was administered with fat. 

Roodenburg et al36 showed that the amount of dietary fat consumed (3 g or 36 g) did not 

affect plasma concentrations of a- and P-carotene after a- and P-carotene supplementation 

but did affect increase in plasma concentration of lutein after lutein ester supplementation. 

This study indicates that the: amount of fat required for optimal intestinal uptake of specific 

carotenoids may be different and also there is limited amount of fat needed for uptake of P-

carotene. Fiber may decrease the bioavailability of carotenoids by entrapping them and by 

interacting with bile acids to result in increased fecal excretion of carotenoids37. Dietary 

fiber also has an inhibitory effect on the utilization of P-carotene in humans. Pectin added to 

a meal decreased the plasma P-carotene concentration by one half38. Therefore, fiber and the 

amount of fat in the diet can affect the bioavailability of P-carotene. 
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Nutritional status also affects vitamin A status. The link between vitamin A and iron 

deficiency anemia is of interest intense. One study39 was designed to determine the effects of 

vitamin A and iron supplementation on vitamin A and iron status in pregnant Indonesian 

women. There were greater improvements in vitamin A status when vitamin A and iron were 

administered together than when they were given alone. 

The low bioavailability of P-carotene in leafy vegetables is the focus of many 

researchers. The bioavailability of P-carotene in yellow-orange fruits (mango and papaya) 

was more than twice that in leafy green vegetables (cassava leaves, water spinach, and 

spinach) and the conversion efficiency of the P-carotene in green vegetables to vitamin A is 

only 26:1, wt:wt30. The bioavailability of P-carotene in spinach leaves was only 5% 

compared with purified p-carotene in a supplement33 . Tomato paste caused a higher retinyl 

palmitate response in the triacylglycerol-rich lipoprotein fraction than spinach although 

spinach had higher P-carote:ne content40 . Another study41 designed to assess interactions 

between vegetable-borne carotenoids also found that tomato puree resulted in a higher 

chylomicron P-carotene response than a spinach meal although the spinach had more than 5 

times the P-carotene content of the tomato puree. Even among the vegetables, green leafy 

vegetables have lower bioavailability compared with others. van het Hof et al31 found that 

spinach, a dark green leafy vegetable, is not as efficient as broccoli and green peas, which are 

the flower and seed parts of vegetable plants, respectively, in increasing plasma P-carotene 

concentration although spinach has about 10 times higher P-carotene content than broccoli 

and green peas. 
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van het Hof et al42 investigated the relative bioavmlability of P-carotene and lutein 

from mixed vegetables compared with purified P-carotene and lutein supplements. The 

bioavailability of P-carotene from a mixed-vegetable diet was 14% while that of lutein was 

67%. The bioavailability of lutein from vegetables was 5 times higher than that of P-

carotene. Johnson et al43 also found that concentrations of P-carotene did not change 

significantly after subjects were fed spinach and com for 15 weeks but lutein from the same 

food source caused significant increases in serum and tissue lutein concentrations. 

Carotenoids are highly hydrophobic molecules and tend to aggregate and crystallize 

in aqueous circumstance15. In the chromoplasts of higher plants, aggregation of carotenoids 

is common44, which changes their physical properties such as light absorption, and chemical 

reactivity, such as solubilization, and may affect their absorption and bioavailability in 

vivo15. 

8 

After release from the food matrix, ingested carotenoids need to be dissolved in lipid 

droplets and then incorporated into mixed micelles, which are a mixture of bile acids, free 

fatty acids, monoglycerides,, and phospholipids, before they are taken up by the mucosa of 

the small intestine and incorporated into triacylglycerol-rich chylomicrons45' 46' 47' 48 . The 

amount of carotenoid incorporated into micelles depends on the polarity of the carotenoid49. 

The more polar oxygenated carotenoids may be more easi"ly incorporated into micelles, and 

therefore may more easily be taken up into the enterocyte and incorporated into 

chylomicrons, which may increase their bioavailability co:npared with the less polar 

hydrocarbon carotenoids50• Carotenoids also distribute differently in chylomicrons because 

of their polarity. The more polar carotenoids are preferentially accumulated at the surface of 

the chylomicron particles while the less polar ones are accumulated in the core. Thus, during 
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postabsorptive transport, the oxygenated carotenoids are more easily transferred to or 

exchanged with other lipoproteins49, which may also increase their bioavailability. Since 

lutein is an oxygenated carotenoid which is more polar than P-carotene, a hydrocarbon 

carotenoid, the mechanisms described above may be one explanation of why the 

bioavailability of P-carotene is usually lower than that oflutein. 

9 

Lutein is a predominant and nonprovitamin A carotenoid in photosynthetic tissues. It 

is the most abundant carotenoid in green leaves51 . Typically, lutein represents about 45% of 

the total carotenoid content of leaves, whereas P-carotene and lesser amounts of other 

hydrocarbon carotenes contribute only about 25%52• P-Carotene 15,15'-monooxygenase is 

the enzyme that cleaves provitamin A carotenoids in the intestinal mucosa. As a 

nonprovitamin A carotenoid, lutein could serve as a pseudosubstrate for that enzyme and 

hence may affect the bioconversion of P-carotene to vitamin A 47• 

Interactions oflutein and P-carotene during absorption and in postabsorptive 

metabolism have been observed in both animal and human studies, as well as in vitro studies. 

Studies in rats showed that relatively large amounts of lutein impaired the utilization of 13-

carotene whereas small amounts enhanced utilization53• When the animals were dosed with a 

carotene: lutein ratio of 1.2 or greater, the total retinol stores in liver and kidneys were higher 

compared with those of when same amount of carotene was given alone. When the ratio was 

as low as 0.06, total retinol stores were markedly decreased. This study showed that in rats 

lutein is an antagonist of vitamin A storage from carotene when lutein is the dominant 

carotenoid in the diet. 
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A human study designed to study the effect of a single, combined dose of 13-carotene 

and lutein showed that the f~-carotene response in the triacylglycerol-rich lipoprotein (TRL) 

fraction of men was significantly decreased when they ingested 13-carotene and lutein in 

combined doses and equal amounts, as compared with that when 13-carotene was given 

alone40• A subsequent study of the effect of 13-carotene/lutein ratio showed that the 13-

carotene TRL response was decreased by 40% when 13-carotene/lutein ratio was 1 :2 

compared with that when a single dose of the same amount of 13-carotene was given54. 

Another human study found that 13-carotene and lutein interact with each other during 

intestinal absorption, metabolism and serum clearance55. Lutein decreased the area under the 

curve (AUC) values for semm 13-carotene when given in combined equimolar doses 

compared with that when a single equimolar dose of 13-carotene was given. One study 

designed to study 13-carotene cleavage activity in vitro found retinal formation was decreased 

when lutein was added to the incubation with 13-carotene at the ratio of 3:1 lutein to 13-

carotene56. 

The above studies showed that purified lutein interacts with purified 13-carotene and, 

specifically, lutein inhibits the utilization of 13-carotene when lutein is the dominant 

carotenoid ingested. The same results were observed when lutein was given with vegetable 

sources of 13-carotene. The chylomicron response to 13-carotene was lower when purified 

lutein was added to tomato puree which was provided as a 13-carotene source by Tyssandier' s 

group41 . These results show that there are interactions between added lutein and 13-carotene 

in vegetables sources. The study33 mentioned earlier found that the relative bioavailability of 

lutein in spinach was more than 5 times higher than that of 13-carotene. The inhibitory effect 
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lutein has on utilization of f~-carotene might explain the prevalence of vitamin A deficiency 

in developing countries despite high intakes of P-carotene from leafy vegetables. 

In leaves, the carotenoids are found in the chloroplasts of green tissues and their color 

blends into that of the chlorophylls. Leaves of all species have a strikingly constant 

carotenoid pattern, often referred to as the chloroplast carotenoid pattern, the main 

carotenoids being lutein (about 45%), P-carotene (usually 25-30%), violaxanthin (15%) and 

neoxanthin (15%). There are also small amounts of a-carotene, a- and P-cryptoxanthin, 

zeaxanthin and antheraxanthin57• As predicted by the known carotenoid composition in 

photosynthetic tissues, lutein is the dominant carotenoid in dark green leafy vegetables. 

Arabidopsis thaliana is a small mustard plant and a model organism for plant 

molecular genetics. In Decc~mber 2000, it was reported that the genome of Arabidopsis had 

been completely sequenced,, which was the first sequence of a plant genome to be completed. 

Arabidopsis is a major model system for plant genetics with a wide array of tools for its 

genetic and molecular characterization and recent availability of its complete genome 

sequence. The relatively constant carotenoid composition of leaves in higher plants suggests 

Arabidopsis leaves could model interactions of P-carotene and lutein ingested in vegetable 

leaves. The lutein!P-carotene ratio in the wild-type Arabidopsis leaves is about 2.33: 151 • We 

used Arabidopsis as a model for dark green leafy vegetables due to the existence of lut2, 

which is a well-characterized lutein-deficient mutant of Arabidopsis isolated in Dr. Dean 

DellaPenna's laboratory at Michigan State University (East Lansing, MI, USA). The 

biochemical phenotype is consistent with a disruption of E ring cyclization. There are no 
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known hazards associated with the consumption of Arabidopsis thaliana. Although 

Arabidopsis thaliana are weeds, the leaves are edible and have a mild flavor58• 

12 

In plants, cyclization of the two end groups of lycopene produces P-carotene, which 

contains 2 P rings, and a-carotene, which contains a p and an E ring. Lycopene is cyclized 

twice by the enzyme lycopene P-cyclase to form P-carotene. The hydroxylation of both P 

rings of P-carotene yields zeaxanthin. One end group of zeaxanthin is then epoxidated to 

form antheraxanthin. Epoxidations of both end groups of zeaxanthin forms violaxanthin. 

Neoxanthin is derived from violaxanthin by an additional rearrangement. The cyclization of 

the two end groups of lycopene by lycopene P-cyclase and lycopene E-cyclase, respectively, 

forms a-carotene. Zeinoxanthin and lutein are each derived from a-carotene, Hydroxylation 

of the p ring of a-carotene forms zeinoxanthin. Subsequent hydroxylation of the E ring 

produces lutein51 • 59' 60. The lut2 mutation eliminates lutein production because the enzyme 

lycopene E-cyclase is disrupted. This enzyme is required for biosynthesis of lutein but not of 

P-carotene and other p,p-carotenoids51 . 

At moderate light intensities, growth and development of lut2 mutants are not visibly 

affected by the absence oflutein, despite its presumed significant role in photosynthesis. 

Chlorophyll content and Chl a-to-Chl b ratio are unaltered51 . The absence oflutein doesn't 

impair the photosynthesis in mature plants at moderate light intensities. However, 

nonphotochemical quenching is defective in lut2 mutants under high-light stress59. Lut2 

mutant viability is possibly caused by partial or total functional compensation by other 

xanthophylls, violaxanthin and antheraxanthin, which increase markedly in the absence of 

lutein51 . When plants absorb more light intensity than needed (high-light stress), there is 
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conversion between violaxanthin and zeaxanthin via antheraxanthin, which is called the 

xanthophyll cycle61 . The angle of the epsilon ring of lutein is the same as that of the epoxy 

ring( s) of antheraxanthin and violaxanthin, which may explain the functional compensation 

of those xanthophylls. Although zeaxanthin and lutein are similar molecules, the differences 

in their three-dimensional shapes make zeaxanthin function less effectively than violaxanthin 

and antheraxanthin in the absence of lutein59. 

The aims for our study are: 1) to evaluate the utility of Arabidopsis thaliana, a 

genetically-facile higher plant, as a model to investigate food matrix effects that limit the 

bioavailability of P-carotene and other nutrients; and 2) to test our hypothesis, which is lutein 

is a naturally-occuring antagonist of the utilization of P-carotene in green leafy vegetables for 

conversion to vitamin A, in vivo in a rodent model by determining the extent to which the 

utilization of P-carotene for conversion to vitamin A is enhanced in lutein-deficient lut2 

Arabidopsis leaves as compared with wild-type leaves. 

There are obvious advantages using animals instead of humans in studies. Tissue 

collection is mostly impossible in human subjects but accessible in animals, which gives 

researchers more details and insight about the mechanisms of the interactions. Since no one 

animal can absolutely mimic human absorption and metabolism of carotenoids, it is 

important to choose the appropriate animal model for the specific application62 . Different 

animals have been used to model the absorption and metabolism of carotenoids in humans. 

Studies have been conducted to estimate the utilization of vitamin A and the ability to utilize 

P-carotene as a source of vitamin A in rats and mice, ferrets and gerbils, which are all small-

sized animals and can be easily managed in the laboratory. 
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Rats can absorb P-carotene and other carotenoids when high doses of carotenoids are 

fed63 and rat intestinal mucosa! cells cleave P-carotene to vitamin A as humans do64. Rats 

have been used in many studies designed to evaluate the efficiency of P-carotene conversion 

to vitamin A 65' 66• 67. Rats are a good model to study the effects of vitamin A deficiency 

because of the rapid development of vitamin A deficiency in this species. Rats on vitamin A-

free diets show symptoms of vitamin A deficiency rapidly (33 days)68 . However, this species 

converts P-carotene to vitamin A too efficiently63 and it does not absorb physiologic doses of 

P-carotene intact69 . Because humans both cleave P-carotene to form vitamin A and absorb a 

variety of carotenoids (including P-carotene) intact, the rat is not the appropriate model for P-

carotene utilization studies62 . 

Ferrets, like humans, can absorb P-carotene intact in the lymph70 and accumulate P-

carotene in tissues and sera71 ' 72 . Ferrets are able to absorb other carotenoids, such as 

lycopene and canthaxanthin intact73 ' 74 . Also, ferrets convert P-carotene to vitamin A in the 

small intestine as humans do64. However, ferrets don't convert P-carotene as efficiently as 

humans. Lederman et al75 showed that ferrets didn't utilize P-carotene efficiently enough to 

improve liver vitamin A stores. The efficiency of conversion of a diet P-carotene to vitamin 

A was poorer than 15:1 under vitamin A-deficient status, much lower than that in humans, 

which is about 12:1. Also, the serum retinyl ester concentrations of ferrets are high unlike 

humans 75 . Therefore, the ferret is not a good model for studying dietary P-carotene 

conversion to vitamin A. 

Gerbils absorb P-carotene when fed in large amounts76. Other studies77' 78 showed 

that Mongolian gerbils store P-carotene in both serum and tissues, such as liver, kidney, 
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spleen and adrenals. Gerbils also absorb P-carotene intact at low dietary levels and P-

carotene is converted to vitamin A with similar efficiency as in humans. Pollack et aI79 used 

Mongolian gerbils to detern1ine if the animals would absorb P-carotene intact from a test 

meal. They found that gerbils, like humans, were able to absorb P-carotene intact when P-

carotene was given as a physiological dose. It was accumulated in serum and liver. Lee et 

al78 found that gerbils have similar conversion efficiency as humans. The same study also 

found that, when gerbils became marginally vitamin A deficient or deficient, the efficiency 

of absorption and conversion of P-carotene to vitamin A increased, which is similar to 

humans. Thus the gerbil is a good animal model for evaluation of P-carotene bioavailability 

and metabolism. Unlike fetTets, gerbils are both inexpensive and commercially available. 

However, it is difficult to deplete hepatic vitamin A stores in gerbils. Lee et al78 found 

gerbils had lower liver vitamin A stores after 10 weeks of feeding a vitamin A-free diet than 

those fed the same diet for 8 weeks. The 10-week liver vitamin A content approached 

deficiency, although it was not significantly different from the level reached after 8 weeks of 

feeding. Thatcher et al77 also showed that gerbils approached vitamin A deficiency after 

being fed a vitamin A-free diet for 84 days. Since it is difficult to deplete the vitamin A 

stores in gerbils, it is necessary to maintain those animals on a vitamin A-free diet for a 

period of time to lower baseline liver vitamin A stores before the experimental period starts. 

Above all, we predicted that gerbils could model humans for us to investigate the bioefficacy 

of P-carotene when the P-carotene in their diet is from the Arabidopsis leaves, which is a 

similar plant matrix from which most populations of the world ingest carotenoids. 
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THE BIOEFFICACY OF BETA-CAROTENE IN LUTEIN-FREE LUT2 LEAVES IS 
HIGHER THAN IN \VILD-TYPE ARABIDOPSIS LEAVES FED TO GERBILS 

A paper to be submitted for publication in the journal Nature 

L. Yan, S.R. Rodermel, C.L. Sanderson, E. Ulman, W.S. White 

Abstract 

The relatively constant carotenoid composition of leaves in higher plants suggests 

Arabidopsis leaves could model interactions of P-carotene and lutein ingested in vegetable 

leaves. We compared liver vitamin A stores in gerbils fed P-carotene in lutein-free (lut2) 

mutant or wild-type (WT) Arabidopsis leaves. Gerbils were fed a vitamin A-free diet for 4 

weeks. They were then fed one of 4 diets for 6 weeks: 1) vitamin A-free diet (n = 8); 2) 

vitamin A-free diet supplemented with purified P-carotene (22.0 nmol P-carotene/g diet; n = 

8); 3) vitamin A-free diet sUlpplemented with lut2 leaves (61.3 nmol P-carotene/g diet; n = 3); 

or 4) vitamin A-free diet supplemented with WT leaves (69.1 nmol P-carotene/g diet; n = 3). 

There were no group differences in body or liver weights. Liver vitamin A stores were 48% 

higher in gerbils fed /ut2 leaves (2.94 ± 0.14 µmol) than in those fed WT leaves (1.99 ± 0.10 

µmol; P = 0.005). Liver vitamin A stores were higher in gerbils fed purified P-carotene (3.80 

± 0.27 µmol) than in those fed WT leaves (P = 0.003) or vitamin A-free diet (0.45 ± 0.08 

µmol; P < 0.001). The difference in liver vitamin A stores in gerbils fed purified P-carotene 

or lut2 leaves was not statistically significant. Although our finding may not extrapolate to 

humans, for the first time, we have shown carotenoid-carotenoid interactions when ingested 

within a plant matrix. 
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Introduction 

Bioavailability is defined as the fraction of an ingested nutrient available for use in 

normal physiologic functions and storage. The amount and bioavailability of dietary 

provitamin A carotenoids dietermine whether vitamin A requirements are met in most 

populations, especially those in developing countries1• 13-carotene is the major provitamin A 

carotenoid in fruits and vegetables, and it has the greatest provitamin A activity. Vitamin A 

deficiency is a severe problem in developing countries, where dark green leafy vegetables are 

widely consumed. In vegetables, the bioavailability of 13-carotene is remarkably low. The 

bioavailability of 13-carotene in yellow-orange fruits is more than twice that in green 

vegetables2. In spinach leaves, the bioavailability of 13-carotene was only 5% compared to 

that in a 13-carotene supplement3. The low bioavailability of 13-carotene in plant-based foods 

is therefore a major constraint to a sustainable, plant-based solution to vitamin A deficiency4. 

Lutein is the most abundant carotenoid in green leaves. 13-Carotene-15,15'-

monooxygenase is the enzyme that cleaves provitamin A carotenoids in the intestinal 

mucosa, liver, and other tissues. As a nonprovitamin A carotenoid, lutein may serve as 

pseudosubstrate for that enzyme and hence may affect the bioconversion of 13-carotene to 

vitamin A5. The bioavailability of 13-carotene from a mixed-vegetable diet is 14% while that 

of lutein is 67% 6• Thus the bioavailability of lutein from vegetables is 5 times higher than 

that of 13-carotene. Ingestion of lutein results in significantly more accumulation of lutein in 

serum and tissues compared with ingestion of 13-carotene ingested from the same food 

sources, spinach and com 7. In rats, lutein inhibits utilization of 13-carotene when the 13-

carotene/lutein ratio is low8 . The same effect was observed in humans in that lutein inhibits 
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P-carotene absorption9, especially at a lower P-carotene/lutein ratio10• The limitation of 

previous studies designed to investigate interactions between P-carotene and lutein is that 

pure carotenoids were used instead of carotenoids in a plant matrix. 

26 

The leaves of higher plants have relatively constant carotenoid composition. Wild-

type Arabidopsis leaves have similar carotenoid content and composition as that in green 

leaves of other higher plants11 , which suggests they could model interactions of P-carotene 

and lutein ingested in dark green leafy vegetable leaves. We used Arabidopsis thaliana also 

due to the existence of well-characterized lut2, which is a lutein-deficient mutant of 

Arabidopsis lacking s-cyclase activity. The lut2 mutants do not accumulate lutein but have 

normal P-carotene concentrations similar to those in wild-type Arabidopsis12• 

Gerbils were used in this study because they absorb P-carotene intact when ingested 

at a physiological level13 and store P-carotene in both serum and tissues14' 15• Gerbils also 

convert P-carotene to vitamin A with efficiency similar to humans15. 

The objective of this study was to compare the bioavailability of P-carotene from WT 

and lut2 Arabidopsis leaves fed to gerbils. We hypothesized that the bioavailability of P-

carotene in lut2 leaves would be higher than that in WT leaves. In that case, genetic 

modification to modulate the high lutein content in green leafy vegetables would be useful in 

combating vitamin A defici1;:ncy in developing countries. 

Materials and Methods 

Animals 

The animals were 30-day old male weanling Mongolian gerbils (n = 36). They were 

purchased from Charles River Laboratories (Kingston, NY, USA). Their body weights 
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ranged from 19.6- 36.5 g. They were individually housed in standard polycarbonate tubs 

(conventional caging) under room temperature and 12 hour light/dark cycle. They had free 

access to food and water. Sawdust was used as contact bedding. 

Each animal's body weight was recorded daily throughout the study. 

All animal care procedures were approved by the Iowa State University Committee 

on Animal Care (COAC). 

Arabidopsis thaliana 
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Lut2 Arabidopsis thaliana seeds were kindly donated by Dr. Dean DellaPenna, 

Department of Biochemistry and Molecular Biology, Michigan State University. Wild-type 

Arabidopsis thaliana seeds were kindly donated by Dr. Steven Rodermel' s laboratory at 

Iowa State University. Wild-type and lut2 Arabidopsis thaliana plants were grown in a 

greenhouse at Iowa State University. The temperature was controlled by a computer and set 

at 72°. During summer, the plants were shielded from direct sunlight by a shield on the roof. 

The green leaf tissue of 8-week-old plants was harvested. The leaves were harvested by 

mowing using scissors. Leaf stems were avoided and the integrity of the leaf was maintained 

in order to avoid activating lipoxygenase enzymes, which might cause the carotenoids in the 

leaves to degrade. The leaves were washed and air dried under yellow light. Each aliquot of 

100 g ofleaves was stored in a Bitran series "PE" 9 x 12" Zip-loc storage bag (Fisher 

Scientific, Carbondale, IL, USA) and then 5 bags ofleaves were stored together in a 172-oz 

multipurpose container (Fisher Scientific, Hanover Park, IL, USA). The containers were 

then stored at -70°C until leaves were freeze-dried. 
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Diets 

There were four diet groups: P-carotene-free, purified P-carotene, WT Arabidopsis 

leaves and lut2 Arabidopsis leaves. The purified P-carotene diet was identical to the vitamin 

A-free control diet except purified P-carotene (Sigma-Aldrich, St Louis, Mo, USA) was 

added to give 22.0 nmol P-carotene/g diet. The ground WT and lut2 Arabidopsis leaf 

powders were shipped overnight on dry ice to Research Diets, Inc. (New Brunswick, NJ, 

USA) where they were combined and pelleted with the vitamin A-free control diet. There 

was 69.1 nmol P-carotene/g diet and 61.3 nmol P-carotene/g diet in the WT Arabidopsis leaf 

diet (WT diet) and lut2 Arabidopsis leaf diet (lut2 diet), respectively. Diets were adjusted 

with com starch, casein, inulin, and cellulose to have similar contents of carbohydrate, 

protein, soluble and insoluble fiber (Table 4). The added fat content was the same in the 4 

diets. The diets were stored at -70°C until use. 

Study design 

After 15 hours of food deprivation, 5 animals were killed on the second day after their 

arrival to determine baseline liver retinol stores. Their livers, kidneys and serum were 

collected and stored at -70°C until analysis. The remaining 31 animals were fed a standard 

laboratory animal diet during the initial 5-day adaptation period. At the end of the adaptation 

period, one gerbil died from an unknown cause, which may have been starvation because it 

had the lowest body weight among all the animals when they arrived. For the remaining 

animals, the diet was changed to a purified ~-carotene-free diet (vitamin A-free AIN-93G 

diet) for 4 weeks to deplete their liver vitamin A stores. At the end of the 4-week depletion 

period and after 15 hours of food deprivation, 8 animals were killed to determine plasma 
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retinol concentrations and liver vitamin A stores. Liver, kidney and plasma were collected 

and stored at -70°C until analysis. The remaining gerbils were randomly assigned to 4 

experimental groups of balanced body weight distribution. In the 4 experimental groups, 

animals were fed WT, lut2, purified P-carotene and P-carotene-free diets, respectively, for 6 

weeks. Because growing and harvesting the Arabidopsis leaves was so labor-intensive, the 

WT group and lut2 group each had only 3 animals. The purified P-carotene and P-carotene-

free groups each had 8 animals. At the end of the 6-week experimental period and after 15 

hours of food deprivation, the animals were killed. Livers, kidneys and serum were collected 

and stored at -70°C until analysis. 

Blood samples were collected via cardiac puncture under C02 anesthesia. Blood 

samples were protected from light and held at room temperature for 30 minutes to facilitate 

clotting. Then the samples were kept on ice until serum was separated by centrifugation in a 

4 °C cold room. The animals were killed by asphyxiation. Livers and kidneys were collected 

and weighed. Individual samples were stored in Whirl-pak write-on style 2-oz plastic bags 

(Fisher Scientific, Hanover Park, IL, USA). 

Serum and tissue samples were stored at -70°C until analysis. Samples were 

analyzed for vitamin A, P-carotene, and lutein contents. Vitamin A and carotenoids were 

extracted from liver (0.2 g), kidney (0.1 g) and serum (400-600 µL) samples. Ethyl P-apo-8'-

carotenoate (trans) (Sigma-Aldrich, St Louis, MO, USA) was added as an internal standard 

for analysis of P-carotene. N-(3-Hydroxyphenyl)-all-trans-retinamide purchased from 

Midwest Research Institute (Kansas City, MO, USA) was added to the liver samples as an 

internal standard for analysis of vitamin A. Retinyl acetate was added to the kidney and 
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serum samples as an internal standard for analysis of total vitamin A and retinol, 

respectively. Blood and tissue samples were handled either under yellow light or protected 

from ambient light. 

Freeze drying 

30 

A VIRTIS Genesis series 25LE freeze drier (The VirTis company, Gardiner, NY, 

USA) was used for freeze-drying the leaves. After "POWER" was switched on, "FREEZE" 

was switched on to begin refrigerating the shelves. The shelves were allowed to cool to -

40°C. The open plastic bags containing the frozen leaves were then placed on their sides on 

the shelves and the leaves were spread in a thin layer to maximize contact between the leaves 

and the shelves. Then the door was closed and shut tightly. The "CONDENSER" was 

switched on to begin cooling the condenser. The condenser was allowed to chill to -40°C, 

which required about 20 minutes. The temperature reading on the display was C 1. Before 

starting the vacuum, trapped water was removed from the condenser drain hose by pulling 

out and down gently. The drain hose was then plugged. The "RELEASE" button was 

switched off and the condenser door and chamber door were checked to be sure they were 

closed and air tight. Then "VACUUM" was turned on until it reached < 100 microns, which 

was the Vl reading on the display. The "HEAT" switch was turned on and the "FREEZE" 

switch remained on. The shelf temperature was then adjusted to -30°C. When the 

temperature reached -30°C, it was held for 2 hours. Then the temperature was increased by 

5°C each hour until it reached 0°C. Beginning at 8 hours, the leaves were weighed every 2 

hours until the weight was stable. The leaves were then allowed to remain in the freeze drier 

for an additional 2 hours. The freeze-dried leaves were brittle and crumbled when touched. 

The water content of the Arabidopsis thaliana leaves was determined to be 90%. 
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The freeze-dried leaves were stored in bell jar dessicators to keep them from 

absorbing moisture until they were ground. 

Grinding leaves 
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Freeze-dried leaves were mixed well in plastic barrels before they were ground. The 

UDY cyclone sample mill (UDY Corporation, Port Collins, CO, USA) was located in the 

laboratory of Dr. Trish Patrick in Agronomy Hall, Iowa State University. The powder was 

passed through a 20-mesh screen during grinding. The powder was collected in airtight glass 

jars and shipped overnight on dry ice to Research Diets, Inc. (New Brunswick, NJ, USA) to 

be pelleted with the purified diets. 

High performance liquid chromatography (HPLC) 

The HPLC system included a 717Plus Autosampler with temperature control set at 

5°C, two 510 HPLC pumps and a 996 Photodiode Array Detector, all of which were 

purchased from Waters Instruments (Milford, MA, USA). The system was operated with 

Millennium32 Software version 3.05.01 (Waters Corporation). A 5-µm C30 4.6 x 250 mm 

analytical column (Carotenoid Column, Waters Instruments, Milford, MA, USA) was used to 

separate the carotenoids. A linear mobile phase gradient was used to elute the carotenoids 

from the C30 column. A linear gradient of 100% solvent A (90: 10 methanol:acetonitrile, v/v) 

to 100% solvent B (methyl-tert butyl ether) over 60 minutes at a flow rate of 1 mL/min was 

used for analysis of the Arabidopsis leaves. A linear gradient of 100% solvent A (methanol) 

to 100% solvent B (methyl-tert butyl ether) over 60 minutes at a flow rate of 0.9 mL/min was 

used for analysis of serum and tissue samples. 
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Analysis of carotenoid profile of Arabidopsis leaves 

WT or /ut2 leaves were chopped finely using a food processor. A 10-g sample of the 

chopped and mixed leaves was mixed in a beaker with 4 g diatomaceous earth (Sigma-

Aldrich, St. Louis, MO, USA) and 1 g solid calcium carbonate (Sigma-Aldrich). 50 mL of 

methanol and tetrahydrofuran (THF) (1 :1, v/v) containing 0.01 % (w/v) butylated 

hydroxytuluene (BHT) was added with the internal standard (IS). The IS was ethyl P-apo-8'-

carotenoate (trans), which was dissolved in THF containing 0.01 % (w/v) BHT. The 

absorbance was measured at 445 nm and the concentration was calculated using the 

absorption coefficient (E1%icm) of2500. The formula used to calculate concentration was 

Absorbance/E1%icm x 10000 =Concentration (ng/µL). The same IS was used for analyses of 

P-carotene and lutein, and also for analyses of chlorophyll a and chlorophyll b. The mixture 

was homogenized for 1 minute using a Brinkmann (Brinkmann Instruments, Inc, Westbury, 

NY, USA) Polytron PT 3000 homogenizer and then was filtered through a 100-mm porcelain 

buchner funnel using vacuum created by a Vacuubrand ME2C vacuum pump (GMBH+CO, 

Wertheim, Germany). The filter papers used were #1 qualitative 90 mm0 on the top and #42 

ashless 90 mm0 on the bottom, both of which were purchased from Whatman International 

Ltd (Maidstone, UK). The filtrate was saved. The filter cake was then transferred to a 

beaker by using a spatula, mixed with 50 mL THF (0.01 % BHT)/methanol (1:1, v/v), and 

homogenized again. The extraction, homogenization and filtration steps were repeated 3 

times. The filtrates were combined in a 500 mL separatory funnel. 50 mL petroleum ether 

containing 0.01 % (w/v) BHT and 50 mL of an aqueous 10% (w/v) NaCl were added. The 

mixture was shaken quickly and then allowed to stand to facilitate phase separation. The 

upper petroleum ether phase was collected. The lower aqueous/THF/methanol phase was re-
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extracted with another 50 mL of petroleum ether (0.01 % BHT). This step was repeated a 

total of 3 times. The upper petroleum ether layers were combined in a 200-mL volumetric 

flask and were brought to volume with petroleum ether (0.01 % BHT). A 10-mL aliquot of 

the extract was dried under vacuum using a SpeedVac AS 160 (Savant Instruments, Inc, 

Farmingdale, NY, USA). The dried residue was immediately reconstituted with 400 µL of 

methyl-tert butyl ether (MTBE) and then with 1600 µL of methanol. The reconstituted 

extracts were filtered through a 13-mm 0.2 µm Nylon syringe filter (Alltech Assoc. Inc, 

Deerfield, IL, USA). A 25-µL aliquot was injected into the HPLC system. Each sample was 

analyzed in duplicate. The protocol used in analyzing leaves was based on that of Hart and 

Scott16. 

The same procedures were used for analysis of the ground leaf powders except that 1 

g of powder was used for each assay. 

The concentration of each internal standard was measured once a week. 

Analysis of carotenoid and tocopherol contents in experimental diets 

A 10-g sample of pelleted diet was mixed and finely ground using a porcelain mortar 

and pestle. A 1-g aliquot of the ground powder was extracted with 3 mL ofTHF containing 

0.01 % (w/v) BHT in a Kimble culture tube (25 x 150 mm). Echinenone in THF containing 

0.01 % (w/v) BHT was added as IS for analysis of P-carotene and lutein. The absorbance of 

the IS solution was measured at 458 nm and an absorption coefficient of 2158 was used to 

calculate concentration. Rac-tocol (Matreya, Inc, State College, PA, USA) in ethanol was 

added as IS for a-tocopherol. The absorbance was measured at 292 nm and an absorption 

coefficient of 87.99 was used to calculate the concentration. The mixture was vortexed using 

Vortex Genie (Fisher Scientific, Hanover Park, IL, USA) for 1 minute. Then 2.7 mL of 
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methanol was added and the mixture was vortexed for 1 minute. With constant stirring, 1 

mL of 40% methanolic KOH solution was added to saponify at 40°C for 30 minutes, during 

which the tube was uncapped but wrapped with aluminum foil and protected from light. 

After saponification, the mixture was cooled. Then approximately 1 g of ascorbic acid was 

added to neutralize the KOH. The pH was tested with pH paper until it reached neutral pH 

7.0. Then 12 mL of 10% (w/v) aqueous NaCl solution was added followed by 18 mL of 

diethyl ether/hexane (1 :1, v/v) containing 0.01 % (w/v) BHT. The mixture was vortexed for 1 

minute and then centrifuged for 15 minutes. The extraction step was repeated 3 times. The 

combined upper phases were washed with 15 mL of water 3 times. Each time the tube was 

centrifuged for 5 minutes to separate organic and aqueous phases. A 3-mL aliquot of extract 

was dried under vacuum using a Savant SpeedVac AS160. The dried extract was 

immediately reconstituted with 400 µL ofMTBE and then with 1600 µL of methanol. The 

reconstituted extract was filtered through a 13-mm 0.2 µm Nylon syringe filter and then a 20-

µL aliquot was injected into the HPLC system. The protocol used was based on that of 

Sharpless et al17 . Each sample was analyzed in duplicate. 

Analysis of liver vitamin A and carotenoids 

The frozen liver samples were thawed at room temperature. The entire liver sample 

was finely minced using two scalpels. A 0.2-g aliquot of liver tissue was mixed with 1 mL of 

freshly prepared 10% (w/v) ethanolic potassium hydroxide (KOH) containing 1 % (w/v) 

pyrogallol. Then the tube was flushed with argon and wrapped with aluminum foil and 

capped. The tissue was saponified at 40°C for 30 minutes with constant stirring. After 

saponification, the mixture was cooled and 1 mL of deionized water was added. N-(3-
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Hydroxyphenyl)-all-trans-retinamide and ethyl P-apo-8'-carotenoate (trans) were added as IS 

for retinol and P-carotene, respectively. N-(3-Hydroxyphenyl)-all-trans-retinamide was 

dissolved in methanol (0.01 % BHT). The molar absorption coefficient at 362 nm used to 

calculate concentration was 59049. The concentration was calculated using 

Absorbance/59049 =Concentration in mol. The molecular weight of N-(3-Hydroxyphenyl)-

all-trans-retinamide is 391.53 g. The absorbance used for ethyl P-apo-8'-carotenoate (trans) 

was 2500 at 445 nm with ethanol (0.01 % BHT) as solvent. Then 10 mL of diethyl 

ether/hexane (1: 1, v/v) containing 0.01 % (w/v) BHT was added to extract carotenoids and 

vitamin A. The mixture was vortexed for 1 minute and then centrifuged for 10 minutes. The 

upper organic phase was saved and the extraction step was repeated. The upper organic 

phases were combined and washed twice with 15 mL of water. The mixture was centrifuged 

for 5 minutes each time to separate aqueous and organic phases. A 5-mL aliquot or extract 

was dried under vacuum. The residue was reconstituted first with 80 µL of MTBE and then 

with 320 µL of methanol. A 20-µL aliquot was injected into the HPLC system. The 

protocol used was based on that of Olson and Frolik18. Each sample was analyzed in 

duplicate. 

Analysis of kidney vitamin A and carotenoids 

Kidney samples were thawed at room temperature. The two kidneys from the same 

animal were finely minced together using two scalpels. A 0.1-g aliquot of kidney tissue was 

mixed with 1 mL of freshly prepared 10% (w/v) ethanolic KOH containing 1 % (w/v) 

pyrogallol. Then the tube was flushed with argon and wrapped with aluminum foil and 

capped. The tissue was saponified at 40°C for 30 minutes with constant stirring. After 
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saponification, the mixture was cooled and 1 mL of deionized water was added. Then 10 mL 

of diethyl ether/hexane (1:1, v/v) containing 0.01 % (w/v) BHT was added to extract the 

carotenoids and vitamin A. The mixture was vortexed for 1 minute and then centrifuged for 

10 minutes. The upper organic phase was saved and the extraction step was repeated. The 

upper organic phases were combined and washed twice with 15 mL of water. The mixture 

was centrifuged for 5 minutes each time. Then retinyl acetate was added as IS for retinol. 

Retinyl acetate was dissolved in ethanol (0.01 % BHT); the absorbance was measured at 328 

nm and the absorption coefficient of 1565 was used in calculating the concentration. Ethyl 

P-apo-8'-carotenoate (trans) in ethanol (0.01 % BHT) was added as IS for P-carotene. The 

entire 20 mL of extract was dried under the vacuum and the residue was reconstituted with 

40 µL ofMTBE and then with 160 µL of methanol. A 80-µL aliquot was injected into the 

HPLC system. Each sample was analyzed in duplicate. 

For the kidney assays, retinyl acetate was added as IS instead ofN-(3-

Hydroxyphenyl)-all-trans-retinamide which was used for liver assays. Because there was co-

elution with N-(3-Hydroxyphenyl)-all-trans-retinamide and retinol in the kidney samples and 

there was better resolution between retinyl acetate and retinol on the HPLC column, retinyl 

acetate was chosen to be used as IS for the kidney assays. 

Analysis of serum vitamin A and carotenoids 

The frozen serum was thawed at room temperature. A 400-600 µL aliquot was mixed 

with 400-600 µL of enzyme reagent (see Appendix), and incubated at room temperature for 1 

hour19. A 600 µL-volume of ethanol containing 0.01 % BHT was added to deproteinate the 

serum. Ethyl P-apo-8'-carotenoate (trans) in ethanol (0.01 % BHT) and retinyl acetate in 
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ethanol (0.01 % BHT) were added as IS for P-carotene and retinol, respectively. The mixture 

was vortexed 30 seconds. A 5-8 mL-volume of hexane (0.01 % BHT) was added to extract 

the carotenoids and vitamin A. The mixture was vortexed 1 minute and then centrifuged for 

10 minutes. The upper phase was removed and saved. The extraction step was repeated. 

The upper organic phases were combined and dried under vacuum. The residue was 

reconstituted with 50 µL ofMTBE and then with 150 µL of methanol. A 160-µl or 190-µL 

aliquot was injected into the HPLC system. Serum assays were not duplicated because of the 

limited available volume of sample. 

Statistical analyse 

Daily body weight data during the 6 week feeding period were analyzed by repeated-

measures analysis of variance (ANOV A) with day as a covariate. Liver weight data were 

analyzed using one-way analysis of variance (ANOVA). Liver, kidney, and serum vitamin A 

and P-carotene data were analyzed using one-way analysis of variance (ANOVA) followed 

by the independent t-test (SPSS 11.0) when there was a significant difference among groups. 

AP value < 0.05 was considered significant. 

Results 

Animals' growth 

Each animal's body weight was recorded daily in order to monitor for signs of 

vitamin A deficiency. The animals gained weight steadily throughout the experimental 

period (Figure 1 ). According to the repeated-measures ANOV A, there was no evidence of a 

difference in weight gain among the 4 treatment groups. There were no other clinical signs 

of vitamin A deficiency. 
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Carotenoid content in the leaves 

The Arabidopsis plants were grown under moderate light intensity. Under these 

conditions, the growth and development of lut2 mutants were not visibly affected by the 

absence of lutein. There was no detectable difference in the appearance of the wild-type and 

lut2 plants (Figure 2). 

Our WT and lut2 Arabidopsis leaves were analyzed for carotenoid content (Table 1 ). 

The ratio oflutein (103.6 µgig fresh leaves) top-carotene (64.8 µgig fresh leaves) content 

was 1.67:1 in WT leaves (Table 1). As seen in the chromatograms (Figure 3), in /ut2 leaves, 

there was no lutein detected and there was an increase in the concentrations of the 

xanthophyll cycle pigments, zeaxanthin, violaxanthin, and antheraxanthin, as compared with 

those in WT leaves, respectively (Table 1 ). There was also a higher content of P-carotene in 

lut2 leaves than in WT leaves. According to Pogson et al12, the contents oflutein, P-

carotene, zeaxanthin, violaxanthin, and antheraxanthin in /ut2 leaves was 0 µgig, 71 µg/g, 7 

µgig, 90 µg/g, and 36 µg/g, respectively, as compared with 133 µgig, 57 µgig, 0 µgig, 30 

µgig, and 0 µgig in WT leaves, respectively. The content of carotenoids in our leaves was 

remarkably similar to that of Pogson's group. 

Carotenoid content in powdered, lyophilized leaves 

After freeze drying and grinding, the powdered WT and lut2 leaves were analyzed to 

determine whether freeze drying caused loss of carotenoids. Table 2 shows the carotenoid 

contents in the powdered leaves. Based on a comparison of the carotenoid content in fresh 

leaves, there was no degradation of p-carotene during the freeze drying and grinding 

processes. P-Carotene content in the powdered WT leaves was 752.6 µgig powder, which 
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was roughly equivalent to 752.6 µgllO g fresh leaf tissue or 75.26 µgig fresh leaf tissue based 

on a water content of fresh Arabidopsis leaves of approximately 90%. In the fresh WT 

leaves, the P-carotene content was 64.8 µgig fresh leaf tissue. The lutein content in 

powdered WT leaves was roughly equivalent to 124.6 µgig leaf tissue as compared with 

103.6 µgig fresh leaf tissue. In powdered /ut2 leaves, P-carotene content was roughly 

equivalent to 94.7 µgig fresh leaf tissue as compared with 88.2 µgig fresh leaf tissue. Based 

on estimated water content of the fresh leaves, there were also increases in neoxanthin, 

violaxanthin and antheraxanthin in WT and lut2 leaves powder, respectively, compared with 

the WT and lut2 leaves, respectively. Those might be explained by further drying during the 

grinding process, during which the heat was generated, so the contents were more 

concentrated than those in the leaves before grinding. Thus, the actual water content in the 

leaves would be expected to have been higher than 90%, which was estimated from the 

freeze drying process. Because we used the leaf powders in the experimental diets and 

analyzed carotenoid content in the leaf powders and in the diets, the changed water content 

did not affect the accuracy of the data. 

Experimental diets 

The P-carotene and lutein contents in the WT and lut2 diet (Table 3) were lower than 

expected based on the added amount of powdered leaves. The WT leaf powder was expected 

to contribute 145.4 nmol P-carotene/g diet. The amount of the lut2 powder added to the lut2 

diet was adjusted to provide P-carotene content equivalent to that in WT diet. But analysis of 

the WT, lut2 and purified P-carotene diets in our laboratory showed that there was only 69.2 

nmol P-carotene/g WT diet and 61.3 nmol P-carotene/g lut2 diet. The amount of P-carotene 
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added to the purified P-carotene diet was calculated to be 6-fold less (by wt) than the P-

carotene content in the WT and lut2 diets, and should have been 24.2 nmol P-carotene/g 

purified P-carotene diet. Analysis in our laboratory showed there was 22.0 nmol P-

carotene/g purified P-carotene diet, which was approximately consistent with what we 

expected. 
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WT and lut2 diets were also analyzed for the contents of xanthophyll cycle pigments 

and neoxanthin {Table 3). There were also some losses in those carotenoids. 

Because heat was used during the pelleting of the diet and carotenoids are not stable 

under heat, some destruction of carotenoids may have occurred. 

The composition of the experimental diets is shown in Table 4. Diets were adjusted 

with.com starch, casein, inulin, and cellulose to have similar contents of carbohydrate, 

protein, soluble and insoluble.fiber; as well as the same amount of fat. 

a-Tocopherol and chlorophyll contents in powdered, lyophilized leaves 

a-Tocopherol is the predominant tocopherol inArabidopsis leaves20• The WT and 

lut2 diets were analyzed for a-tocopherol contents, which were 56.53 µgig diet (equivalent to 

56.53 µgig leaves) and 43.23 µgig diet (equivalent to 43.23 µgig leaves), respectively. 

Because a-tocopherol was also added as a dietary component, the a-tocopherol content in the 

WT diet was higher compared with 19.1 pmol/mg (8.23 µgig) a-tocopherol in the WT 

Arabidopsis leaves which was reported by Callakova and DellaPenna20. 

Chlorophyll contents and chlorophyll a-to-chlorophyll b (Chi a-to-Chi b) ratio were 

measured in the WT and lut2 leaves {Table 5). There was a difference in the chlorophyll a 

content between the WT and lut2 leaves. There was also a difference in the chlorophyll b 
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contents between the WT and lut2 leaves. There was no apparent difference in the Chi a-to-

Chl b ratios between the WT and lut2 Ieaves. According to Pogson et a112, there were no 

significant differences between lut2 and wild-type Arabidopsis plants in Chi a, Chi b, or the 

Chi a-to-Chi b ratio. We also analyzed the chlorophyll a and chlorophyll b contents in the 

powders (Table 6). The chlorophyll a and chlorophyll b contents in the powdered WT and 

powdered lut2 leaves were similar. The Chi a-to-Chi b ratios between the powdered WT and 

powdered lut2 leaves were also very similar. Those results are consistent with those of 

Pogson et al 12. There were apparent increases in the chlorophyll contents in the leaf powders 

after grinding, which were similar to those observed in the carotenoid contents. The 

discrepancy between the chlorophyll contents in leaves and powdered leaves may again be 

explained by further drying during grinding. Also, we did not perform measurements on 

multiple samples so sampling error may be another explanation for the discrepancy. 

Liver vitamin A and P-carotene contents 

At the end of the 6-wk feeding period on the experimental diets, the purified P-

carotene group had the highest liver vitamin A stores (Table 7). The liver vitamin A stores 

were higher in the WT, lut2, and purified P-carotene groups than in the P-carotene-free group 

which had the lowest liver vitamin A stores (P < 0.05). The difference in liver vitamin A 

stores in gerbils fed purified P-carotene or lut2 leaves was not statistically significant (P > 

0.05). Thus only 7 animals in that group were included in the statistical analysis. 

There was also a difference in liver vitamin A stores between lut2 and WT groups (P 

= 0.005). Liver vitamin A stores were 48% higher in gerbils fed lut2 leaves than in those fed 

WT leaves. Liver vitamin A stores were 2-fold higher in gerbils fed purified P-carotene than 
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in those fed WT leaves (P = 0.003). Given the 3-fold higher 13-carotene content in the WT 

diet, our results are consistent with the 6: 1 retinol activity equivalency (RAE) ratio of 13-

carotene in plant matrices and in purified form in humans. 
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There was no significant change in the liver vitamin A stores in the baseline group 

and 4-week depletion group, which was 1.41±0.27 µmol, and 1.21±0.11 µmol, 

respectively. When these data were compared with the liver vitamin A stores in the 13-

carotene-free group, after 6 additional weeks on the depletion diet, the animals' liver vitamin 

A stores decreased as expected. 

As shown in Table 7, there were no significant differences in liver 13-carotene 

content among the treatment groups. At the end of the study, no 13-carotene was detected in 

the livers of the gerbils in the 13-carotene-free group. No lutein was detected in liver tissues 

in any of the groups. 

Like humans, gerbils accumulate intact 13-carotene in tissues13' 15, which was 

confirmed in this study. 13-Carotene concentrations in normal human livers range from 5.8 to 

25 nmoVg. In this study, the range ofliver weights and liver 13-carotene content in gerbils 

was 1.6 to 2.4 g and 29.6 to 74.3 nmol, respectively. Thus the liver 13-carotene 

concentrations ranged from 16.1to37.8 nmol/g, which were similar to those reported in 

humans. 

At the end of the study, the liver weights ranged from 1.96 to 2.13 gin the WT diet 

group; from 1.8 to 2.37 gin the lut2 diet group; from 1.62 to 2.18 gin the purified 13-carotene 

diet group; and from 1.65 to 2.41 gin the vitamin A-free diet group. There were no 
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significant differences in the liver weights among the 4 treatment groups using one-way 

ANOVA. 

Kidney vitamin A and J3-carotene contents 

There were no significant differences in the kidney vitamin A stores among the 4 

treatment groups (Table 8), which can be explained by adequate liver vitamin A stores to 

maintain vitamin A homeostasis. There was no J3-carotene or lutein detected in kidneys in 

the animals in any of the groups. 

Serum retinol and J3-carotene contents 

Serum retinol and J3-carotene concentrations are shown in Table 9. There were no 

significant differences in the serum retinol concentrations among the 4 treatment groups. 

Similarly, there were no significant differences in the serum J3-carotene concentrations 

among the 4 treatment groups. There was no lutein detected in any of the groups. 

43 
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Figure 1. The body weights of gerbils in the lut2, wild-type (WT), purified beta-carotene, 

and beta-carotene-free diet groups measured daily during the 6-week feeding period on the 

experimental diets. Each point represents the average weight of the animals in each group. 

There was no significant difference in weight gain analyzed by repeated measures ANOVA 

with day as covariate. 
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Figure 2. There were no phenotypic differences in the wild-type (WT) and lut2 Arabidopsis 

plants. 
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HPLC analysis of wild-type and lutl Arabidopsis leaves 

lime 

Figure 3. HPLC chromatograms of wild-type (upper) and lut2 (lower) Arabidopsis leaves. 

No lutein was detected in lut2 leaves. 
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Table 1. Carotenoid content in fresh WT and lut2 leaves 

Genotype Neoxanthin Violaxanthin Antheraxanthin Zeaxanthin P-Carotene Lutein 

WT 

lut2 

32.5 

20.8 

24.0 

72.0 

µgig leaves 

5.1 

18.9 6.0 

Table 2. Carotenoid content in powdered WT and lut2 leaves 

Genotype Neoxanthin Violaxanthin Antheraxanthin Zeaxanthin 

µgig powder 

VIT 394.9 347.6 72.2 

lut2 320.6 983.3 282.2 93.5 

64.8 

88.2 

P-Carotene 

752.6 

946.6 

103.6 

Lutein 

1246.2 
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Table 3. Carotenoid content in wild-type and lut2 diets 

Genotype Neoxanthin Violaxanthin Antheraxanthin Zeaxanthin P-Carotene Lutein 

µgig diet 

WT 

lut2 

14.7 

2.5 

2.2 

1.2 3.3 

Table 4. Macronutrient composition of the experimental diets 

Protein Carbohydrate Fat Fiber, soluble 

% (wt/wt) 

WT 16.5 54.6 15.6 1.0 

lut2 16.6 54.9 15.7 1.0 

Purified P-carotene 16.9 55.9 16.0 1.0 

P-Carotene-free 16.9 55.9 16.0 1.0 

37.1 

32.9 

75.2 

Fiber, insoluble 

4.9 

4.9 

5.0 

5.0 
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Table 5. Chlorophyll a and chlorophyll b contents in fresh WT and /ut2 leaves 

Genotype 

WT 

lut2 

Chia 

µgig 

744.88 

596.12 

Chlb 

µgig 

298.59 

218.54 

Chi a/Chi b 

2.50 

2.73 

Table 6. Chlorophyll a and chlorophyll b contents in powdered WT and lut2 leaves 

Genotype 

WT 

lut2 

Chia 

µglO.lg 

910.28 

847.12 

Chlb 

µglO.lg 

335.54 

307.87 

Chi a/Chi b 

2.71 

2.75 
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Table 7. Liver vitamin A and 13-carotene stores in the treatment groups at the end of the 6-

week feeding period 

Diet Group 

WT 

lut2 

Purified 13-carotene 

13-Carotene-free2 

VitaminA1 

µmol 

1.99 ± O.lOa 

2.94 ± 0.14b 

3.80 ± 0.27 b 

0.45 ± 0.08c 

13-Carotene1 

nmol 

48.66 ± 9.32 

46.05 ± 11.00 

54.38 ± 5.31 

Not detected 

1Values represent group means± SEM. Values with different superscripts are significantly 

different (independent t-test), P < 0.05. 

20ne animal was dropped from the 13-carotene-free group as an outlier because it had 

abnormally high liver vitamin A store (2.11 µmol) compared with the mean of the other 

animals. 
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Table 8. Kidney vitamin A stores in the treatment groups at the end of the 6-week feeding 

period 

Diet Group 

WT 

lut2 

Purified P-carotene 

P-Carotene-free 

Values represent group means ± SEM. 

Vitamin A 

nmol 

1.55 ± 0.06 

1.60 ± 0.12 

1.46 ± 0.09 

1.42 ± 0.07 
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Table 9. Serum retinol and P-carotene concentrations in the treatment groups at the end of 

the 6-week feeding period 

Diet Group 

WT 

lut2 

Purified P-carotene2 

P-Carotene-free 

Values represent group means ± SEM. 

Retinol1 

µmol/L 

2.57 ± 0.16 

2.49 ± 0.17 

2.60 ± 0.11 

2.22 ± 0.14 

P-Carotene1 

nmol/L 

7.61±1.38 

6.89 ± 2.30 

5.18 ± 1.17 

not detected 

20ne animal was dropped from the purified P-carotene group due to sample loss. 

52 



www.manaraa.com

53 

Discussion 

Vitamin A deficiency is a severe problem in many developing countries, and 

especially in South-East Asia21 . It is the leading cause of preventable blindness in children21 

and is associated with increased severity of infections22 and higher risk of mortality23. P-

Carotene is the major provitamin A carotenoid in fruits and vegetables, and it has the greatest 

provitamin A activity. But vitamin A deficiency is still endemic in areas of world where 

dark green leafy vegetables, such as spinach and cassava leaves are widely consumed. The 

low bioavailability of P-carotene in vegetables, especially in dark green leafy vegetables has 

been observed in many studies2' 3' 9' 24' 25 . Low dietary fat intake26' 27, dietary fiber28, complex 

food matrix2' 3' 29, nutritional status30 and interactions with other carotenoids5 can contribute 

to the poor bioavailability and bioconversion of P-carotene to vitamin A. Particularly, the 

interactions between P-carotene and lutein have been studied8' 9' 1 o, 25 ' 31 ' 32, which showed the 

inhibitory effects of lutein on the utilization of P-carotene when lutein is the dominant 

carotenoid ingested. Because lutein is the predominant and most abundant carotenoid in 

green leaves 12, an interaction between P-carotene and lutein might explain the prevalence of 

vitamin A deficiency in developing countries despite high intakes of P-carotene from leafy 

vegetables. The limitation of previous studies designed to investigate interactions between 

P-carotene and lutein is the use of purified P-carotene and lutein instead of the carotenoids in 

leafy vegetable matrix form, which is the major provitamin A source in developing countries. 

This study was designed to compare the bioavailability of P-carotene in a leaf matrix, 

which is the Arabidopsis thaliana plant, fed to a rodent model. We used Arabidopsis to 

model dark green leafy vegetables in this study because: 1) the leaves of all species of higher 
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plants have a strikingly constant carotenoid pattem33, which implies the carotenoid profile of 

Arabidopsis is similar to that in dark green leafy vegetables; 2) we took advantage of the 

existence of lut2, which is a well-characterized lutein-deficient mutant of Arabidopsis. By 

comparing the bioavailability of P-carotene from WT and lut2 Arabidopsis leaves fed to an 

animal model, we were able to assess the inhibitory effect of lutein on utilization of P-

carotene. 

Mongolian gerbils were used for this study. Gerbils absorb P-carotene intact when 

ingested at a physiological level13, and store P-carotene in both serum and tissues, such as 

liver, kidney, spleen, and adrenals14' 15. Particularly, gerbils convert P-carotene to vitamin A 

with similar conversion efficiency to humans15 . Thus the gerbil is a good model to evaluate 

the bioavailability and metabolism of P-carotene. In this study, we didn't detect P-carotene 

in the animals' kidneys, which may be explained by either the ~-carotene contents in the 

experimental diets were not high enough to accumulate in the animals' kidneys or the P-

carotene concentrations in the kidneys were too low to be detected by HPLC. Because it is 

difficult to deplete hepatic vitamin A stores in gerbils14' 15, the gerbils in our study were fed a 

P-carotene-free vitamin A-free diet for 4 weeks to lower their liver vitamin A stores before 

they were fed the experimental diets. The liver vitamin A stores at the end of the 4-week 

depletion period was lower than those in the baseline groups. The liver vitamin A stores in 

the P-carotene-free group at the end of the 6-week feeding period was lower compared with 

those in the 4-week depletion group. Thus the animals' liver vitamin A stores were 

decreased when fed a P-carotene-free vitamin A-free diet for 10 weeks. 
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Liver vitamin A stores were highest in the purified P-carotene diet group which is 

consistent with the higher bioavailability of purified P-carotene compared with P-carotene in 

vegetable matrices. Liver vitamin A stores were 2-fold higher in gerbils fed purified P-

carotene than in those fed WT leaves. The liver vitamin A stores in the lut2 diet group were 

1.5-fold higher than in the WT diet group. Comparing the macronutrient contents (Table 4) 

and carotenoid contents (Table 3) between WT and lut2 diets, we can see that the two diets 

were similar in composition except for the large difference in lutein content. As seen in 

Table 3, there was a higher P-carotene content in the WT diet than in the lut2 diet, but the 

lut2 group had higher liver vitamin A stores at the end of the study. Also, although there 

were differences in the content of xanthophyll cycle pigments in the WT and lut2 diets 

(Table 3), these differences were less marked than the substantiai difference in lutein content. 

Thus the data suggest there were interactions between P-carotene and lutein ingested in 

Arabidopsis leaves. The bioavailability of P-carotene from lutein-free lut2 Arabidopsis 

leaves is higher than from WT Arabidopsis leaves in Mongolian gerbils. The data suggest 

lutein is the factor that caused the treatment effect. 

There was no lutein detected in serum or tissues in any of the treatment groups. Thus 

we concluded that lutein was not absorbed by the gerbils. There is the possibility that lutein 

could inhibit P-carotene being taken up into the mucosa of the small intestine or P-carotene 

being cleaved to vitamin A in the enterocyte. In this study, lutein most likely interacted with 

P-carotene before P-carotene was absorbed. Based on the rough calculation in each group of 

the conversion of absorbed P-carotene to vitamin A using the liver vitamin A and P-carotene 

content data, and assuming a molar conversion efficiency of 2: 1. The liver vitamin A store -:-
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2/(liver vitamin A store-:- 2 +liver B-carotene store), the conversion was almost the same in 

WT (1.99-:- 2/(1.99-:- 2 + 0.04866 )= 95.34%), lut2 (2.94-:- 2 /(2.94-:- 2 + 0.04605) = 

96.96%) and purified P-carotene (3.8-:- 2/(3.8-:- 2 + 0.05438) = 97.22%) diet groups. So it 

seems that lutein inhibited P-carotene absorption instead of P-carotene cleavage to vitamin 

A. Because the small intestines of the gerbils were not collected in this study, we could not 

determine whether lutein was taken up into the enterocyte. Further work needs to be done to 

better understand the mechanism of interaction in the small intestines of this species. 

P-Carotene content in the WT diet was 3-fold higher than in the purified P-carotene 

diet and liver vitamin A stores were 2-fold higher in gerbils fed purified P-carotene than in 

those fed WT leaves. Our results are consistent with the 6: 1 retinol activity equivalency 

(RAE) ratio of P-carotene in plant matrices and in purified form in human diets34. Thus our 

study supports the conclusion that conversion efficiency in gerbils is similar to that in 

humans15 . The accumulation of P-carotene in serum and tissues in this species is also 

consistent with previous reports14• 15. 

Throughout the study, there was no sign of vitamin A deficiency in any of the 

animals, which is consistent with the reported difficulty in depleting liver vitamin A stores in 

this species14' 15 (Figure 1). This could explain the similar kidney and serum vitamin A stores 

in the 4 treatment groups because the animals' liver vitamin A stores were not exhausted and 

thus they were able to maintain vitamin A homeostasis. 

We found in this study that lutein is not absorbed or accumulated in serum or tissues 

in this species. Unlike most species, humans are indiscriminate accumulators and 

accumulate both carotenes and xanthophylls35. Thus the gerbil is not an appropriate model 
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for extrapolation to humans when studying lutein metabolism. Our findings may have 

application for production of animal feeds, such as cattle feed. Like gerbils, some cattle 

absorb significant amounts of P-carotene from the diet but do not efficiently absorb 

xanthophylls36. That which is not converted to vitamin A is deposited intact in tissues. 

Genetic modification such as to eliminate or decrease the amount of lutein in, e.g., feed com, 

may be beneficial in improving the bioavailability of P-carotene in cattle. P-Carotene levels 

are related to luteal function37' 38 and bovine fertility39. Although our finding does not 

extrapolate to humans, for the first time, we have shown carotenoid-carotenoid interactions 

when ingested within a plant matrix. Our study shows that genetic modification may be a 

good approach to improve the bioavailability of certain carotenoids and may be useful in 

combating vitamin deficiency in developing countries. 
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GENERAL CONCLUSIONS 

Vitamin A deficiency is a public health problem in about 76 countries, especially in 

South-East Asia1. The amount and bioavailability of dietary provitamin A carotenoids 

determine whether vitamin A requirements are met in developing countries2. P-Carotene is 

the major provitamin A carotenoid in fruits and vegetables. Dark green leafy vegetables are 

widely consumed in developing countries where vitamin A deficiency is prevalent thus the 

low bioavailability of P-carotene in these vegetables has been concern. The food matrix3• 4' 5, 

interactions with fat and fiber6' 7' 8, nutritional status9, and interactions with other 

carotenoids10 can affect the bioavailability and bioconversion of carotenoids. In particular, 

lutein has inhibitory effects on utilization of P-carotene11 ' 12' 13• 14' 15• 16 when lutein is the 

dominant carotenoid ingested. Lutein is the predominant carotenoid in dark green leaves 17, 

which might explain the prevalence of vitamin A deficiency in developing countries despite 

high consumption of leafy vegetables. 

The interactions between lutein and P-carotene in previous studies were investigated 

when carotenoids were ingested in purified form instead of in the plant matrix from which 

most of the world's populations ingest carotenoids. In our study, we used Arabidopsis leaves 

as a model for dark green leafy vegetables due to the remarkably constant carotenoid 

composition in leaves of higher plants and the availability of a well-characterized lutein-

deficient mutant of Arabidopsis, lut2. We investigated the interactions oflutein and P-

carotene in a rodent model, the gerbil, which P-carotene metabolism similar to humans18' 19' 

20. We found that the P-carotene is more bioavailable in /ut2 leaves than WT leaves fed to 

gerbils. Our data suggest lutein has an inhibitory effect on the bioavailability of P-carotene 

in dark green leaves of higher plants in this rodent model. We also found that lutein was not 
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absorbed in gerbils so this study may not extrapolate to humans. However, for the first time, 

we have shown carotenoid-carotenoid interactions when ingested within a plant matrix. This 

study has also shown the potential for genetic modification to modulate the bioavailability of 

B-carotene to combat vitamin A deficiency in developing countries. 

Further study should be conducted to investigate whether lutein is taken up into the 

enterocyte to better understand lutein-B-carotene interactions in the small intestine of this 

species. 
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APPENDIX A 

ENZYME REAGENT FOR SERUM RETINOL ASSAY 

1) Prepare 0.1 M monobasic solution. Monobasic is NaH2P04·H20 (molecular weight 

137.99 g). 

0.1M=0.1mol/L=0.1 x 137.99 g/L = 13.799 g/L = 1.3799 g/100 mL. 

1.3799 g ofNaH2P04·H20 is dissolved in 100 mL of deionized water to prepare 0.1 M 

monobasic solution. 

2) Prepare 0.1 M dibasic solution. Dibasic is Na2HP04• 12H20 and the molecular weight is 

358.14 g. 

66 

0.1M=0.1mol/L=0.1 x 358.14 g/L = 35.814 g/L = 3.5814 g/lOOmL. 

3.5814gofNa2HP04·12H20 is dissolved in 100 mL of deionized water to prepare the 0.1 M 

dibasic solution. 

3) The buffer is prepared by mixing 39 mL of0.1 M monobasic (NaH2P04·H20) and 61 mL 

ofO.l M dibasic (Na2HP04·12H20). The pH is measured using a pH meter. The pH of the 

buffer is 7.0. Then 0.1 mL ofTriton-X-100 (Sigma-Aldrich, St. Louis, MO, USA) is added 

to the buffer. 

4) 1000 U cholesterol esterase (Calbiochem-Novabiochem Corp., San Diego, CA, USA) and 

100,000 U triacylglycerol lipase (Sigma-Aldrich) were stored at -20°C until they were added 

to the buffer. The powder residues in the bottles were rinsed into the buffer using buffer. 

The enzyme solution was stored in 500-µL aliquots in 1.5-mL microcentrifuge tubes at -

20°C. Each aliquot was used once to avoid detrimental effects of freeze-thaw cycles on 

enzyme activity. 
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The protocol used in preparing the enzyme reagent was based on that of Handelman et al 

(1999), in which for 100 µL of plasma samples, 1 U cholesterol esterase and 100 U 

triacylglycerol lipase were added. For the 400 µL, 500 µLor 600 µL plasma samples we 

used for our study, 400 µL, 500 µL and 600 µL of enzyme reagent were used, respectively. 

At the time of the serum assay, the frozen serum was thawed at room temperature. Then the 

available volume of serum was transferred to a culture tube (16 x 100 mm, Fisher Scientific). 

An equal volume of enzyme reagent was added and the mixture was allowed to incubate at 

room temperature for 1 hour during which light was avoided. Then the same procedure 

described in the Materials and Methods Section was followed. 
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APPENDIXB 

LIVER WEIGHT OF EACH ANIMAL IN BASELINE, 4-WEEK DEPLETION, 
VITAMIN A-FREE, WILD-TYPE, LUT2, AND PURIFIED BETA-CAROTENE 

GROUPS 

Baseline 4-Week depletion Vitamin A-free WT Lut2 P-Carotene 

g 

0.85 2.19 1.67 2.1 2.37 1.96 

0.87 2.1 1.96 2.13 1.8 2.18 

1.19 1.51 2.41 1.96 1.84 2.09 

1 1.92 1.82 1.82 

1.06 1.67 1.65 2.04 

1.7 1.71 1.86 

2 1.78 1.62 

1.95 1.68 1.9 
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